skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "R. Shrestha, R. Atluri"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    To understand and quantify the thermal energy transfer in a biological cell, the measurement of thermal properties at a cellular level is emerging as great importance. We report herein a unique technique that utilizes a laser point heat source for temporal temperature rise in a micro-pipette thermal sensor; this technique characterizes heat conduction of a measured sample, the Jurkat cell, thus measuring the sample's thermal conductivity (TC). To this end, we incorporated the computational model in COMSOL to solve for the transient temperature and used the multi-parameter fitting of the experimental data using MATLAB. To address the influence of a Jurkat cell's chemical composition on TC, we compared three structural models for prediction of effective thermal conductivity in heterogeneous materials thereby determining the weight percentage of the Jurkat cell. When considering water and protein as the major constituents, we found that a combination of Maxwell-Euken and Effective Medium Theory modeling provides the closest approximation to published weight percent data and, therefore, is recommended for prediction of the cell composition. We validate the accuracy of the measurement technique, itself, by measuring polyethylene microspheres and observed 1% deviation from published data. The unique technique was determined to be mechanically non-invasive, capable of maintaining viable cells, and capable of measuring the thermal conductivity of a Jurkat cell, which was demonstrated to be 0.538 W/(m⋅K) ± 1%. 
    more » « less